Digital Image Processing

Image Enhancement (Spatial Filtering 2)

In this lecture we will look at more spatial filtering techniques

- Spatial filtering refresher
- Sharpening filters
- $1^{\text {st }}$ derivative filters
- $2^{\text {nd }}$ derivative filters
- Combining filtering techniques

Spatial Filtering Refresher

Filter
Original Image Pixels

$$
\begin{aligned}
e_{\text {processed }}= & v^{*} e+ \\
& r^{*} a+s^{*} b+t^{*} c+ \\
& u^{*} d+w^{*} f+ \\
& x^{*} g+y^{*} h+z^{*} i
\end{aligned}
$$

The above is repeated for every pixel in the original image to generate the smoothed image

Sharpening Spatial Filters

Previously we have looked at smoothing filters which remove fine detail Sharpening spatial filters seek to highlight fine detail

- Remove blurring from images
- Highlight edges

Sharpening filters are based on spatial differentiation

Spatial Differentiation

Differentiation measures the rate of change of a function
Let's consider a simple 1 dimensional example

Spatial Differentiation

$1^{\text {st }}$ Derivative

The formula for the $1^{\text {st }}$ derivative of a function is as follows:

$$
\frac{\partial f}{\partial x}=f(x+1)-f(x)
$$

It's just the difference between subsequent values and measures the rate of change of the function

$1^{\text {st }}$ Derivative (cont...)

$2^{\text {nd }}$ Derivative

The formula for the $2^{\text {nd }}$ derivative of a function is as follows:

$$
\frac{\partial^{2} f}{\partial^{2} x}=f(x+1)+f(x-1)-2 f(x)
$$

Simply takes into account the values both before and after the current value

$2^{\text {nd }}$ Derivative (cont...)

Using Second Derivatives For Image Enhancement

The $2^{\text {nd }}$ derivative is more useful for image enhancement than the $1^{\text {st }}$ derivative

- Stronger response to fine detail
- Simpler implementation
- We will come back to the $1^{\text {st }}$ order derivative later on
The first sharpening filter we will look at is
the Laplacian
- Isotropic
- One of the simplest sharpening filters
- We will look at a digital implementation

The Laplacian

The Laplacian is defined as follows:

$$
\nabla^{2} f=\frac{\partial^{2} f}{\partial^{2} x}+\frac{\partial^{2} f}{\partial^{2} y}
$$

where the partial $1^{\text {st }}$ order derivative in the x direction is defined as follows:

$$
\frac{\partial^{2} f}{\partial^{2} x}=f(x+1, y)+f(x-1, y)-2 f(x, y)
$$

and in the y direction as follows:

$$
\frac{\partial^{2} f}{\partial^{2} y}=f(x, y+1)+f(x, y-1)-2 f(x, y)
$$

The Laplacian (cont...)

So, the Laplacian can be given as follows:

$$
\begin{aligned}
\nabla^{2} f=[& f(x+1, y)+f(x-1, y) \\
& +f(x, y+1)+f(x, y-1)] \\
& -4 f(x, y)
\end{aligned}
$$

We can easily build a filter based on this

0	1	0
1	-4	1
0	1	0

The Laplacian (cont...)

Applying the Laplacian to an image we get a new image that highlights edges and other discontinuities

But That Is Not Very Enhanced!

The result of a Laplacian filtering is not an enhanced image
We have to do more work in order to get our final image Subtract the Laplacian result from the original image to generate our final sharpened enhanced image

$$
g(x, y)=f(x, y)-\nabla^{2} f
$$

Laplacian Image Enhancement

In the final sharpened image edges and fine detail are much more obvious

Laplacian Image Enhancement

Simplified Image Enhancement

The entire enhancement can be combined into a single filtering operation

$$
\begin{aligned}
& g(x, y)=f(x, y)-\nabla^{2} f \\
& =f(x, y)-[f(x+1, y)+f(x-1, y) \\
& \quad+f(x, y+1)+f(x, y-1) \\
& \quad-4 f(x, y)] \\
& =5 f(x, y)-f(x+1, y)-f(x-1, y) \\
& \quad-f(x, y+1)-f(x, y-1)
\end{aligned}
$$

Simplified Image Enhancement (cont...)

This gives us a new filter which does the whole job for us in one step

Simplified Image Enhancement (cont...)

Variants On The Simple Laplacian

There are lots of slightly different versions of the Laplacian that can be used:

0	1	0
1	-4	1
0	1	0
Limple		

1	1	1
1	-8	1
1	1	1
Variant of		
Laplacian		

$1^{\text {st }}$ Derivative Filtering

Implementing $1^{\text {st }}$ derivative filters is difficult in practice
For a function $f(x, y)$ the gradient of f at coordinates (x, y) is given as the column vector:

$$
\nabla \mathrm{f}=\left[\begin{array}{l}
G_{x} \\
G_{y}
\end{array}\right]=\left[\begin{array}{l}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y}
\end{array}\right]
$$

$1^{\text {st }}$ Derivative Filtering (cont...)

The magnitude of this vector is given by:

$$
\begin{aligned}
\nabla f & =\operatorname{mag}(\nabla \mathrm{f}) \\
& =\left[G_{x}^{2}+G_{y}^{2}\right]^{1 / 2} \\
& =\left[\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}\right]^{1 / 2}
\end{aligned}
$$

For practical reasons this can be simplified as:

$$
\nabla f \approx\left|G_{x}\right|+\left|G_{y}\right|
$$

$1^{\text {st }}$ Derivative Filtering (cont...)

There is some debate as to how best to calculate these gradients but we will use:

$$
\begin{aligned}
\nabla f & \approx\left|\left(z_{7}+2 z_{8}+z_{9}\right)-\left(z_{1}+2 z_{2}+z_{3}\right)\right| \\
& +\left|\left(z_{3}+2 z_{6}+z_{9}\right)-\left(z_{1}+2 z_{4}+z_{7}\right)\right|
\end{aligned}
$$

which is based on these coordinates

z_{1}	z_{2}	z_{3}
z_{4}	z_{5}	z_{6}
z_{7}	z_{8}	z_{9}

Sobel Operators

Based on the previous equations we can derive the Sobel Operators

-1	-2	-1
0	0	0
1	2	1

-1	0	1
-2	0	2
-1	0	1

To filter an image it is filtered using both operators the results of which are added together

Sobel Example

An image of a contact lens which is enhanced in order to make defects (at four and five o'clock in the image) more obvious

Sobel filters are typically used for edge detection

What is an Edge?

- Sharp change in brightness (discontinuities).
- Where do edges occur?
- Actual edges: Boundaries between objects
- Sharp change in brightness can also occur within object Reflectance changes
Change in surface orientation Illumination changes. E.g. Cast shadow boundary

Edge Detection

- Image processing task that finds edges and contours in images
- Edges so important that human vision can reconstruct edge lines

(a)

(b)

Characteristics of an Edge

- Edge: A sharp change in brightness.
- Ideal edge is a step function in some direction.

Characteristics of an Edge

- Real (non-ideal) edge is a slightly blurred step function.
- Edges can be characterized by high value first derivative.

$$
f^{\prime}(x)=\frac{d f}{d x}(x)
$$

(a)

Rising slope causes positive high value first derivative
(b)
$\xrightarrow{\rightarrow} x$
(c)

Falling slope causes negative high value first derivative

Characteristics of an Edge

- Ideal edge is a step function in certain direction.
- First derivative of I(x) has a peak at the edge
- Second derivative of $I(x)$ has a zero crossing at edge

Computing Derivative of Discrete Function

$$
\frac{d f}{d u}(u) \approx \frac{f(u+1)-f(u-1)}{2}=0.5 \cdot(f(u+1)-f(u-1))
$$

Finite Differences

- Forward difference (right slope)

$$
\Delta_{+} f(x)=f(x+1)-f(x)
$$

- Backward difference (left slope)

$$
\Delta_{-} f(x)=f(x)-f(x-1)
$$

- Central Difference (average slope)

$$
\Delta f(x)=\frac{1}{2}(f(x+1)-f(x-1))
$$

Comparing the $1^{\text {st }}$ and $2^{\text {nd }}$ derivatives we can conclude the following:
$-1^{\text {st }}$ order derivatives generally produce thicker edges

- $2^{\text {nd }}$ order derivatives have a stronger response to fine detail e.g. thin lines
$-1^{\text {st }}$ order derivatives have stronger response to grey level step
$-2^{\text {nd }}$ order derivatives produce a double response at step changes in grey level

In this lecture we looked at:

- Sharpening filters
- $1^{\text {st }}$ derivative filters
- $2^{\text {nd }}$ derivative filters
- Combining filtering techniques

Combining Spatial Enhancement Methods

Successful image enhancement is typically not achieved using a single operation
Rather we combine a range of techniques in order to achieve a final result
This example will focus on enhancing the bone scan to the right

Combining Spatial Enhancement Methods (cont...)

bone scan (a)

Combining Spatial Enhancement Methods (cont...)

Result of applying a

The product of (c) and (e) which will be and (f) power-law trans. to used as a mask
(e)

Sharpened image which is sum of (a) (g)

Combining Spatial Enhancement Methods (cont...)

Compare the original and final images

